This documentation is automatically generated by online-judge-tools/verification-helper
#ifndef _LIB_GEOMETRY_CALIPER
#define _LIB_GEOMETRY_CALIPER
#include "Line2D.cpp"
#include "Polygon2D.cpp"
#include <bits/stdc++.h>
namespace lib {
using namespace std;
namespace geo {
namespace plane {
template <typename T, typename Large = T,
typename enable_if<!is_integral<T>::value>::type * = nullptr,
typename enable_if<!is_integral<T>::value>::type * = nullptr>
struct Caliper {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
point p;
Large ang;
Caliper(point a, Large alpha) : p(a) {
ang = remainder(alpha, 2 * trig::PI);
while (ang < 0)
ang += 2 * trig::PI;
}
Large angle_to(const point &q) const {
return remainder(arg(q - p) - ang, 2 * trig::PI);
}
void rotate(double theta) {
ang += theta;
while (ang > 2 * trig::PI)
ang -= 2 * trig::PI;
while (ang < 0)
ang += 2 * trig::PI;
}
void move(const point &q) { p = q; }
point versor() const { return point::polar(1.0, ang); }
line as_line(Large scale = 1.0) const {
return line(p, p + versor() * scale);
}
friend Large dist(const Caliper &a, const Caliper &b) {
return dist(a.as_line(), b.p);
}
};
template <typename T, typename Large = T> struct PolygonCalipers {
constexpr static Large LIMIT = 4 * acosl(-1);
typedef Point<T, Large> point;
typedef Caliper<T, Large> caliper;
typedef ConvexPolygon<T, Large> polygon;
typedef pair<int, Large> descriptor;
polygon poly;
vector<caliper> calipers;
vector<int> indices;
vector<int> walked;
Large angle_walked;
PolygonCalipers(const polygon &poly, const vector<descriptor> &descriptors)
: poly(poly), walked(descriptors.size()), angle_walked(0) {
indices.reserve(descriptors.size());
calipers.reserve(descriptors.size());
for (size_t i = 0; i < descriptors.size(); i++) {
calipers.emplace_back(poly[descriptors[i].first], descriptors[i].second);
indices.emplace_back(descriptors[i].first);
}
}
caliper operator[](int i) const { return calipers[i]; }
int index(int i) const { return indices[i]; }
bool has_next() const {
return *min_element(walked.begin(), walked.end()) < poly.size() &&
angle_walked < LIMIT;
}
Large angle_to_next(int i) const {
int u = indices[i];
return calipers[i].angle_to(poly[u + 1]);
}
void step_(int i) {
int u = indices[i]++;
indices[i] %= poly.size();
calipers[i].move(poly[u + 1]);
walked[i]++;
}
void next() {
int i = 0;
Large best = angle_to_next(0);
for (size_t j = 1; j < calipers.size(); j++) {
Large cur = angle_to_next(j);
if (cur < best) {
best = cur;
i = j;
}
}
Large alpha = angle_to_next(i);
for (auto &caliper : calipers)
caliper.rotate(alpha);
step_(i);
angle_walked += alpha;
}
};
} // namespace plane
} // namespace geo
} // namespace lib
#endif
#line 1 "geometry/Caliper.cpp"
#line 1 "geometry/Line2D.cpp"
#line 1 "geometry/GeometryEpsilon.cpp"
#line 1 "Epsilon.cpp"
#include <bits/stdc++.h>
namespace lib {
using namespace std;
template <typename T = double> struct Epsilon {
T eps;
constexpr Epsilon(T eps = 1e-9) : eps(eps) {}
template <typename G,
typename enable_if<is_floating_point<G>::value>::type * = nullptr>
int operator()(G a, G b = 0) const {
return a + eps < b ? -1 : (b + eps < a ? 1 : 0);
}
template <typename G,
typename enable_if<!is_floating_point<G>::value>::type * = nullptr>
int operator()(G a, G b = 0) const {
return a < b ? -1 : (a > b ? 1 : 0);
}
template <typename G,
typename enable_if<is_floating_point<G>::value>::type * = nullptr>
bool null(G a) const {
return (*this)(a) == 0;
}
template <typename G,
typename enable_if<!is_floating_point<G>::value>::type * = nullptr>
bool null(G a) const {
return a == 0;
}
};
} // namespace lib
#line 5 "geometry/GeometryEpsilon.cpp"
#define GEOMETRY_EPSILON(T, x) \
template <> \
lib::Epsilon<T> *lib::geo::GeometryEpsilon<T>::eps = \
new lib::Epsilon<T>((x));
#define GEOMETRY_COMPARE0(T, x) GeometryEpsilon<T>()((x))
#define GEOMETRY_COMPARE(T, x, y) GeometryEpsilon<T>()((x), (y))
namespace lib {
using namespace std;
namespace geo {
template <typename T> struct GeometryEpsilon {
static Epsilon<T> *eps;
template <typename G> int operator()(G a, G b = 0) const {
return (*eps)(a, b);
}
};
GEOMETRY_EPSILON(int, 0);
GEOMETRY_EPSILON(long, 0);
GEOMETRY_EPSILON(long long, 0);
} // namespace geo
} // namespace lib
#line 1 "geometry/Trigonometry.cpp"
#line 4 "geometry/Trigonometry.cpp"
namespace lib {
using namespace std;
namespace geo {
namespace trig {
constexpr static long double PI = 3.141592653589793238462643383279502884197169399375105820974944l;
double cos(double x) { return ::cos(x); }
double sin(double x) { return ::sin(x); }
double asin(double x) { return ::asin(x); }
double acos(double x) { return ::acos(x); }
double atan2(double y, double x) { return ::atan2(y, x); }
long double cos(long double x) { return ::cosl(x); }
long double sin(long double x) { return ::sinl(x); }
long double asin(long double x) { return ::asinl(x); }
long double acos(long double x) { return ::acosl(x); }
long double atan2(long double y, long double x) { return ::atan2l(y, x); }
} // namespace trig
} // namespace geo
} // namespace lib
#line 6 "geometry/Line2D.cpp"
namespace lib {
using namespace std;
namespace geo {
namespace plane {
namespace {
template <typename T> bool scalar_between(T a, T o, T b) {
if (a > b)
swap(a, b);
return GEOMETRY_COMPARE(T, a, o) <= 0 && GEOMETRY_COMPARE(T, o, b) <= 0;
}
template <typename T> bool scalar_strictly_between(T a, T o, T b) {
if (a > b)
swap(a, b);
int x = GEOMETRY_COMPARE(T, a, o);
int y = GEOMETRY_COMPARE(T, o, b);
return x <= 0 && y <= 0 && (x < 0 || y < 0);
}
} // namespace
template <typename T, typename Large = T> struct Point {
T x, y;
Point() : x(0), y(0) {}
Point(T x, T y) : x(x), y(y) {}
template <typename G, typename H> explicit operator Point<G, H>() const {
return Point<G, H>((G)x, (G)y);
}
friend Point reversed(const Point &a) { return Point(a.y, a.x); }
Point &operator+=(const Point &rhs) {
x += rhs.x, y += rhs.y;
return *this;
}
Point &operator-=(const Point &rhs) {
x -= rhs.x, y -= rhs.y;
return *this;
}
Point &operator*=(T k) {
x *= k, y *= k;
return *this;
}
Point &operator/=(T k) {
x /= k, y /= k;
return *this;
}
Point operator+(const Point &rhs) const {
Point res = *this;
return res += rhs;
}
Point operator-(const Point &rhs) const {
Point res = *this;
return res -= rhs;
}
Point operator*(T k) const {
Point res = *this;
return res *= k;
}
Point operator/(T k) const {
Point res = *this;
return res /= k;
}
Point operator-() const { return Point(-x, -y); }
inline friend Point convolve(const Point &a, const Point &b) {
return Point(a.x * b.x - a.y * b.y, a.x * b.y + b.x * a.y);
}
inline friend Large cross(const Point &a, const Point &b) {
return (Large)a.x * b.y - (Large)a.y * b.x;
}
friend Large cross(const Point &a, const Point &b, const Point &c) {
return cross(b - a, c - a);
}
inline friend Large dot(const Point &a, const Point &b) {
return (Large)a.x * b.x + (Large)a.y * b.y;
}
friend int ccw(const Point &u, const Point &v) {
return GEOMETRY_COMPARE0(Large, cross(u, v));
}
friend int ccw(const Point &a, const Point &b, const Point &c) {
return ccw(b - a, c - a);
}
friend int half_ccw(const Point& u, const Point& v) {
int dot_sgn = GEOMETRY_COMPARE0(Large, dot(u, v));
int ccw_sgn = ccw(u, v);
if(dot_sgn == 0) return ccw_sgn ? 1 : 0;
return dot_sgn * ccw_sgn;
}
friend Large norm(const Point &a) { return sqrtl(dot(a, a)); }
friend Large norm_sq(const Point &a) { return dot(a, a); }
bool is_null() const { return GEOMETRY_COMPARE0(Large, norm_sq(*this)) == 0; }
bool is_versor() const {
return GEOMETRY_COMPARE(Large, norm_sq(*this), (Large)1) == 0;
}
static Point polar(Large d, Large theta) {
return Point(trig::cos(theta) * d, trig::sin(theta) * d);
}
friend Point rotate(const Point &a, Large theta) {
return convolve(a, polar((Large)1, theta));
}
friend Point ortho(const Point &a) { return Point(-a.y, a.x); }
friend Large arg(const Point &a) { return trig::atan2(a.y, a.x); }
friend Large signed_angle(const Point &v, const Point &w) {
return remainder(arg(w) - arg(v), 2.0 * trig::PI);
}
friend Large angle(const Point &v, const Point &w) {
return abs(signed_angle(v, w));
}
friend Large ccw_angle(const Point &v) {
Large res = arg(v);
if (res < 0)
res += 2.0 * trig::PI;
return res;
}
friend Large ccw_angle(const Point &v, const Point &w) {
Large res = signed_angle(v, w);
if (res < 0)
res += 2.0 * trig::PI;
return res;
}
inline friend Point normalized(const Point &a, Large k) {
return a.is_null() ? Point() : a / norm(a) * k;
}
inline friend Point versor(const Point &a) { return normalized(a, (Large)1); }
friend bool collinear(const Point &a, const Point &b) {
return GEOMETRY_COMPARE0(Large, cross(a, b)) == 0;
}
friend bool collinear(const Point &a, const Point &b, const Point &c) {
return collinear(b - a, c - a);
}
friend Point project(const Point &a, const Point &v) {
return v / norm_sq(v) * dot(a, v);
}
template <typename G = T,
typename enable_if<!is_integral<G>::value>::type * = nullptr>
friend Point reflect(const Point &a, const Point &v) {
Point n = versor(v);
return a - n * 2 * dot(n, v);
}
friend bool between(const Point &a, const Point &b, const Point &c) {
return collinear(a, b, c) &&
GEOMETRY_COMPARE0(Large, dot(a - b, c - b)) <= 0;
}
friend bool strictly_between(const Point &a, const Point &b, const Point &c) {
return collinear(a, b, c) &&
GEOMETRY_COMPARE0(Large, dot(a - b, c - b)) < 0;
}
friend bool collinear_between(const Point a, const Point &o, const Point &b) {
return scalar_between(a.x, o.x, b.x) && scalar_between(a.y, o.y, b.y);
}
friend bool collinear_strictly_between(const Point &a, const Point &o,
const Point &b) {
return scalar_between(a.x, o.x, b.x) && scalar_between(a.y, o.y, b.y);
}
friend Large dist(const Point &a, const Point &b) { return norm(a - b); }
friend bool operator==(const Point &a, const Point &b) {
return GEOMETRY_COMPARE(T, a.x, b.x) == 0 &&
GEOMETRY_COMPARE(T, a.y, b.y) == 0;
}
friend bool operator!=(const Point &a, const Point &b) { return !(a == b); }
friend bool operator<(const Point &a, const Point &b) {
return tie(a.y, a.x) < tie(b.y, b.x);
}
friend bool operator>(const Point &a, const Point &b) {
return tie(a.y, a.x) > tie(b.y, b.x);
}
friend bool operator>=(const Point &a, const Point &b) {
return tie(a.y, a.x) >= tie(b.y, b.x);
}
friend bool operator<=(const Point &a, const Point &b) {
return tie(a.y, a.x) <= tie(b.y, b.x);
}
friend istream &operator>>(istream &in, Point &p) { return in >> p.x >> p.y; }
friend ostream &operator<<(ostream &out, const Point &p) {
return out << p.x << " " << p.y;
}
};
template <typename T, typename Large = T> struct Rectangle {
typedef Point<T, Large> point;
T minx, miny, maxx, maxy;
Rectangle() {
minx = miny = numeric_limits<T>::max();
maxx = maxy = numeric_limits<T>::min();
}
Rectangle(const initializer_list<point> &points) : Rectangle() {
for (const auto &p : points) {
minx = min(minx, p.x);
maxx = max(maxx, p.x);
miny = min(miny, p.y);
maxy = max(maxy, p.y);
}
}
bool contains(const point &p) const {
return GEOMETRY_COMPARE(T, minx, p.x) <= 0 &&
GEOMETRY_COMPARE(T, p.x, maxx) <= 0 &&
GEOMETRY_COMPARE(T, miny, p.y) <= 0 &&
GEOMETRY_COMPARE(T, p.y, maxy) <= 0;
}
};
template <typename T, typename Large = T> struct Line {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
point a, b;
Line(point a, point b) : a(a), b(b) {}
template <typename G = T,
typename enable_if<!is_integral<G>::value>::type * = nullptr>
Line(T A, T B, T C) {
if (GEOMETRY_COMPARE0(Large, A))
a = point(-C / A, 0), b = point((-C - B) / A, 1);
else if (GEOMETRY_COMPARE0(Large, B))
a = point(0, -C / B), b = point(1, (-C - A) / B);
else
assert(false);
}
template <typename G, typename H> explicit operator Line<G, H>() const {
return Line<G, H>(Point<G, H>(a), Point<G, H>(b));
}
point direction() const { return b - a; }
friend point project(const point &p, const line &v) {
return project(p - v.a, v.b - v.a) + v.a;
}
friend bool collinear(const line &u, const line &v) {
return collinear(u.a, u.b, v.a) && collinear(u.a, u.b, v.b);
}
bool contains(const point &p) const { return collinear(a, b, p); }
friend bool parallel(const line &u, const line &v) {
return collinear(u.b - u.a, v.b - v.a);
}
friend bool opposite(const line &l, const point &p1, const point &p2) {
int x = GEOMETRY_COMPARE0(Large, cross(p1 - l.a, l.direction()));
int y = GEOMETRY_COMPARE0(Large, cross(p2 - l.a, l.direction()));
return x * y <= 0;
}
friend pair<point, bool> intersect(const line &l1, const line &l2) {
Large c1 = cross(l2.a - l1.a, l1.b - l1.a);
Large c2 = cross(l2.b - l1.a, l1.b - l1.a);
if (GEOMETRY_COMPARE0(Large, c1 - c2) == 0)
return {{}, false};
return {(l2.b * c1 - l2.a * c2) / (c1 - c2), true};
}
friend bool has_unique_intersection(const line &l1, const line &l2) {
return !parallel(l1, l2);
}
friend bool has_intersection(const line &l1, const line &l2) {
return collinear(l1, l2) || has_unique_intersection(l1, l2);
}
friend Large dist(const line &l1, const point &p) {
// TODO: improve this
return dist(p, project(p, l1));
}
friend Large dist(const line &l1, const line &l2) {
if (has_intersection(l1, l2))
return 0;
// TODO: improve this
return dist(l1.a, project(l1.a, l2));
}
};
template <typename T, typename Large = T> struct Ray {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
typedef Ray<T, Large> ray;
point a, b;
Ray(point a, point direction) : a(a), b(a + direction) {}
static ray from_points(point a, point b) { return ray(a, b - a); }
point direction() const { return b - a; }
point direction_versor() const { return versor(direction()); }
line as_line() const { return line(a, b); }
explicit operator line() const { return as_line(); }
template <typename G, typename H> explicit operator Ray<G, H>() const {
return Ray<G, H>(Point<G, H>(a), Point<G, H>(b));
}
bool contains(const point &p) const {
return collinear(a, b, p) &&
GEOMETRY_COMPARE0(Large, dot(p - a, b - a)) >= 0;
}
bool strictly_contains(const point &p) const {
return collinear(a, b, p) &&
GEOMETRY_COMPARE0(Large, dot(p - a, b - a)) > 0;
}
bool collinear_contains(const point &p) const {
point dir = direction();
int dx = GEOMETRY_COMPARE0(T, dir.x);
if (dx == 0)
return GEOMETRY_COMPARE0(T, dir.y) * GEOMETRY_COMPARE0(T, p.y - a.y) >= 0;
else
return dx * GEOMETRY_COMPARE0(T, p.x - a.x) >= 0;
}
bool collinear_strictly_contains(const point &p) const {
point dir = direction();
int dx = GEOMETRY_COMPARE0(T, dir.x);
if (dx == 0)
return GEOMETRY_COMPARE0(T, dir.y) * GEOMETRY_COMPARE0(T, p.y - a.y) > 0;
else
return dx * GEOMETRY_COMPARE0(T, p.x - a.x) > 0;
}
friend pair<point, bool> intersect(const ray &r, const line &l) {
auto p = intersect(r.as_line(), l);
if (!p.second)
return {{}, false};
if (!r.collinear_contains(p.first))
return {{}, false};
return p;
}
friend pair<point, bool> intersect(const ray &a, const ray &b) {
auto p = intersect(a, b.as_line());
if (!p.second)
return {{}, false};
if (!b.collinear_contains(p.first))
return {{}, false};
return p;
}
friend bool has_unique_intersection(const ray &r, const line &l) {
if (!has_unique_intersection(r.as_line(), l))
return false;
int x = GEOMETRY_COMPARE0(Large, cross(r.direction(), l.direction()));
int y = GEOMETRY_COMPARE0(Large, cross(r.a - l.a, l.direction()));
return x * y <= 0;
}
friend bool has_intersection(const ray &r, const line &l) {
return collinear(r.as_line(), l) || has_unique_intersection(r, l);
}
friend bool has_unique_intersection(const ray &r1, const ray &r2) {
// TODO: not efficient
return has_unique_intersection(r1, r2.as_line()) &&
has_unique_intersection(r2, r1.as_line());
}
friend bool has_intersection(const ray &r1, const ray &r2) {
return r1.contains(r2.a) || has_unique_intersection(r1, r2);
}
friend Large dist(const ray &r, const point &p) {
if (GEOMETRY_COMPARE0(Large, dot(r.direction(), p - r.a)) < 0)
return dist(p, r.a);
return dist(r.as_line(), p);
}
friend Large dist(const ray &r, const line &l) {
if (has_intersection(r, l))
return Large(0);
return dist(l, r.a);
}
friend Large dist(const ray &r1, const ray &r2) {
if (has_intersection(r1, r2))
return Large(0);
return min(dist(r1, r2.a), dist(r2, r1.a));
}
};
template <typename T, typename Large = T> struct Halfplane {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
typedef Ray<T, Large> ray;
typedef Halfplane<T, Large> halfplane;
point a, b;
Halfplane(point a, point direction) : a(a), b(a + direction) {}
static halfplane from_points(point a, point b) { return halfplane(a, b - a); }
point direction() const { return b - a; }
point direction_versor() const { return versor(direction()); }
line as_line() const { return line(a, b); }
explicit operator line() const { return as_line(); }
ray as_ray() const { return ray(a, b); }
explicit operator ray() const { return as_ray(); }
template <typename G, typename H> explicit operator Halfplane<G, H>() const {
return Halfplane<G, H>(Point<G, H>(a), Point<G, H>(b));
}
bool contains(const point& p) const {
return ccw(a, b, p) <= 0;
}
bool strictly_contains(const point& p) const {
return ccw(a, b, p) < 0;
}
};
template <typename T, typename Large = T> struct Segment {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
typedef Segment<T, Large> segment;
typedef Ray<T, Large> ray;
point a, b;
Segment() {}
Segment(point a, point b) : a(a), b(b) {}
line as_line() const { return line(a, b); }
explicit operator line() const { return as_line(); }
bool is_degenerate() const { return a == b; }
template <typename G, typename H> explicit operator Segment<G, H>() const {
return Segment<G, H>(Point<G, H>(a), Point<G, H>(b));
}
bool contains(const point &p) const { return between(a, p, b); }
bool strictly_contains(const point &p) const {
return strictly_between(a, p, b);
}
bool collinear_contains(const point &p) const {
return collinear_between(a, p, b);
}
bool collinear_strictly_contains(const point &p) const {
return collinear_strictly_between(a, p, b);
}
friend pair<point, bool> intersect(const segment &s, const line &l) {
auto p = intersect(s.as_line(), l);
if (!p.second)
return {{}, false};
if (!s.collinear_contains(p.first))
return {{}, false};
return p;
}
friend pair<point, bool> intersect(const segment &s, const ray &r) {
auto p = intersect(s.as_line(), r.as_line());
if (!p.second)
return {{}, false};
if (!s.collinear_contains(p.first) || !r.collinear_contains(p.first))
return {{}, false};
return p;
}
friend pair<segment, int> intersect_segment(segment s1, segment s2) {
if (collinear(s1.as_line(), s2.as_line())) {
if (s1.a > s1.b)
swap(s1.a, s1.b);
if (s2.a > s2.b)
swap(s2.a, s2.b);
segment res(max(s1.a, s2.a), min(s1.b, s2.b));
return {res, int(res.a <= res.b) * 2};
} else {
auto p = intersect(s1, s2);
return {segment(p.first, p.first), p.second};
}
}
friend pair<point, bool> intersect(const segment &s1, const segment &s2) {
auto p = intersect(s1, s2.as_line());
if (!p.second)
return {{}, false};
if (!s2.collinear_contains(p.first))
return {{}, false};
return p;
}
friend bool has_unique_intersection(const segment &s, const line &l) {
if (!has_unique_intersection(s.as_line(), l))
return false;
return opposite(l, s.a, s.b);
}
friend bool has_intersection(const segment &s, const line &l) {
return collinear(s.as_line(), l) || has_unique_intersection(s, l);
}
friend bool has_unique_intersection(const segment &s, const ray &r) {
if (!has_unique_intersection(r, s.as_line()))
return false;
return opposite(r.as_line(), s.a, s.b);
}
friend bool has_intersection(const segment &s, const ray &r) {
return r.contains(s.a) || r.contains(s.b) || has_unique_intersection(s, r);
}
friend bool has_unique_intersection(const segment &s1, const segment &s2) {
if (!has_unique_intersection(s1.as_line(), s2.as_line()))
return false;
return opposite(s2.as_line(), s1.a, s1.b) &&
opposite(s1.as_line(), s2.a, s2.b);
}
friend bool has_intersection(const segment &s1, const segment &s2) {
return s1.contains(s2.a) || s1.contains(s2.b) ||
has_unique_intersection(s1, s2);
}
friend Large dist(const segment &s, const point &p) {
if (GEOMETRY_COMPARE0(Large, dot(p - s.a, s.b - s.a)) <= 0)
return dist(s.a, p);
if (GEOMETRY_COMPARE0(Large, dot(p - s.b, s.a - s.b)) <= 0)
return dist(s.b, p);
return dist(s.as_line(), p);
}
friend Large dist(const segment &s, const line &l) {
if (has_intersection(s, l))
return Large(0);
return min(dist(l, s.a), dist(l, s.b));
}
friend Large dist(const segment &s, const ray &r) {
if (has_intersection(s, r))
return Large(0);
return min({dist(r, s.a), dist(r, s.b), dist(s, r.a)});
}
friend Large dist(const segment &s1, const segment &s2) {
if (has_intersection(s1, s2))
return Large(0);
return min(
{dist(s1, s2.a), dist(s1, s2.b), dist(s2, s1.a), dist(s2, s1.b)});
}
friend bool operator==(const segment &l1, const segment &l2) {
return tie(l1.a, l1.b) == tie(l2.a, l2.b);
}
friend bool operator!=(const segment &l1, const segment &l2) {
return !(l1 == l2);
}
friend bool operator<(const segment &l1, const segment &l2) {
return tie(l1.a, l1.b) < tie(l2.a, l2.b);
}
};
template <typename Direction, typename T, typename Large> struct AngleComparator {
using type = typename Direction::type;
using point = Point<T, Large>;
Direction dir;
AngleComparator() {}
AngleComparator(Direction dir) : dir(dir) {}
bool operator()(const type &a, const type &b) const {
return ccw(dir(a), dir(b)) > 0;
}
template <typename Iterator>
static void sortByAngle(Iterator begin, Iterator end, const Direction& dir = Direction()) {
AngleComparator cmp(dir);
begin =
partition(begin, end, [&dir](const type &p) { return dir(p).is_null(); });
auto half =
partition(begin, end, [&dir](const type &p) { return dir(p) > point(); });
sort(begin, half, cmp);
sort(half, end, cmp);
}
template <typename Iterator>
static Iterator minByAngle(Iterator begin, Iterator end, const Direction& dir = Direction()) {
AngleComparator cmp(dir);
return min_element(begin, end, [&dir, &cmp](const type& a, const type& b) {
bool part_a = dir(a) > point();
bool part_b = dir(b) > point();
if(part_a == part_b)
return cmp(a, b);
return part_a > part_b;
});
}
};
template <typename Ray> struct RayDirection {
using point = typename Ray::point;
using type = Ray;
point operator()(const type& rhs) const {
return rhs.direction();
}
};
template <typename Point> struct PointDirection {
using type = Point;
Point pivot;
PointDirection() : pivot() {}
PointDirection(Point pivot) : pivot(pivot) {}
Point operator()(const Point& rhs) const {
return (rhs - pivot).direction();
}
};
} // namespace plane
template <typename T, typename Large = T> struct CartesianPlane {
typedef plane::Point<T, Large> point;
typedef plane::Line<T, Large> line;
typedef plane::Rectangle<T, Large> rectangle;
typedef plane::Segment<T, Large> segment;
typedef plane::Ray<T, Large> ray;
typedef plane::Halfplane<T, Large> halfplane;
template<typename Direction>
using angle_comparator = plane::AngleComparator<Direction, T, Large>;
};
} // namespace geo
} // namespace lib
#line 1 "geometry/Polygon2D.cpp"
#line 1 "geometry/Circle2D.cpp"
#line 1 "utils/Annotation.cpp"
#line 4 "utils/Annotation.cpp"
namespace lib {
using namespace std;
template <typename T, typename A = void>
struct Note : public T {
private:
A m_data = A();
Note(const T& t, const A& a) : T(t), m_data(a) {}
public:
using T::T;
static Note make(const T& t, const A& a) {
return Note(t, a);
}
friend A& annotation(Note& note) {
return note.m_data;
}
friend const A& annotation(const Note& note) {
return note.m_data;
}
template<typename C, typename D>
operator Note<T,A>() const {
return Note<C, D>(*this, m_data);
}
};
template <typename T>
struct Note<T, void> : public T {
using T::T;
using T::operator=;
Note(const T& a) : T(a) {}
Note(T &&a): T(std::move(a)) {}
};
template<typename T, typename A>
Note<T, A> make_note(const T& t, const A& a) {
return Note<T, A>::make(t, a);
}
} // namespace lib
#line 6 "geometry/Circle2D.cpp"
namespace lib {
using namespace std;
namespace geo {
namespace plane {
template <typename T, typename Large = T> struct Barycentric {
typedef Point<T, Large> point;
point r1, r2, r3;
T a, b, c;
Barycentric(const point &r1, const point &r2, const point &r3, T a = 1,
T b = 1, T c = 1)
: r1(r1), r2(r2), r3(r3), a(a), b(b), c(c) {}
point as_point() const { return (r1 * a + r2 * b + r3 * c) / (a + b + c); }
static Barycentric centroid(const point &r1, const point &r2,
const point &r3) {
return Barycentric(r1, r2, r3);
}
static Barycentric circumcenter(const point &r1, const point &r2,
const point &r3) {
Large a = norm_sq(r2 - r3), b = norm_sq(r3 - r1), c = norm_sq(r1 - r2);
return Barycentric(r1, r2, r3, a * (b + c - a), b * (c + a - b),
c * (a + b - c));
}
static Barycentric incenter(const point &r1, const point &r2,
const point &r3) {
return Barycentric(r1, r2, r3, norm(r2 - r3), norm(r1 - r3), norm(r1 - r2));
}
static Barycentric orthocenter(const point &r1, const point &r2,
const point &r3) {
Large a = norm_sq(r2 - r3), b = norm_sq(r3 - r1), c = norm_sq(r1 - r2);
return Barycentric(r1, r2, r3, (a + b - c) * (c + a - b),
(b + c - a) * (a + b - c), (c + a - b) * (b + c - a));
}
static Barycentric excenter(const point &r1, const point &r2,
const point &r3) {
return Barycentric(r1, r2, r3, -norm(r2 - r3), norm(r1 - r3),
norm(r1 - r2));
}
};
template <typename T, typename Large = T> struct Circle {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
typedef Barycentric<Large> bary;
typedef Segment<T, Large> segment;
point center;
T radius;
Circle(point center, T radius) : center(center), radius(radius) {}
Circle(const point &p1, const point &p2, const point &p3) {
center = bary::circumcenter(p1, p2, p3).as_point();
radius = dist(center, p1);
}
Circle(const point &p1, const point &p2) {
center = (p1 + p2) / 2;
radius = dist(center, p1);
}
bool crosses_x_axis(point p = point()) const {
auto c = center - p;
return GEOMETRY_COMPARE0(T, c.y + radius) >= 0 && GEOMETRY_COMPARE0(T, c.y - radius) < 0;
}
static Circle incircle(const point &p1, const point &p2, const point &p3) {
point center = bary::incenter(p1, p2, p3).as_point();
return Circle(center, dist(line(p1, p2), center));
}
friend pair<segment, int> intersect_segment(const Circle &c, const line &l) {
point H = project(c.center, l);
Large h = norm(H - c.center);
if (GEOMETRY_COMPARE(Large, c.radius, h) < 0)
return {{}, 0};
Large norma = sqrtl(c.radius + h) * sqrtl(c.radius - h);
point v = normalized(l.direction(), norma);
segment res = segment(H - v, H + v);
return {res, res.is_degenerate() ? 1 : 2};
}
friend Large intersection_area(const Circle &a, const Circle &b) {
Large d = norm(a.center - b.center);
if (GEOMETRY_COMPARE(Large, a.radius + b.radius, d) <= 0)
return 0.0;
if (GEOMETRY_COMPARE(Large, d, abs(a.radius - b.radius)) <= 0) {
T r = min(a.radius, b.radius);
return r * r * trig::PI;
}
auto compute = [d](Large ra, Large rb) {
Large sup = rb * rb + d * d - ra * ra;
Large alpha = trig::acos(sup / (2.0 * rb * d));
Large s = alpha * rb * rb;
Large t = rb * rb * trig::sin(alpha) * trig::cos(alpha);
return s - t;
};
return compute(a.radius, b.radius) + compute(b.radius, a.radius);
}
static Large intersection_signed_area(T r, const point &a, const point &b) {
Circle C(point(), r);
auto ps = intersect_segment(C, line(a, b));
if (!ps.second)
return r * r * signed_angle(a, b) / 2;
auto s = ps.first;
bool outa = !contains(C, a), outb = !contains(C, b);
if (outa && outb) {
segment ab(a, b);
if (ab.contains(s.a) && ab.contains(s.b))
return (r * r * (signed_angle(a, b) - signed_angle(s.a, s.b)) +
cross(s.a, s.b)) /
2;
return r * r * signed_angle(a, b) / 2;
} else if (outa)
return (r * r * signed_angle(a, s.a) + cross(s.a, b)) / 2;
else if (outb)
return (r * r * signed_angle(s.b, b) + cross(a, s.b)) / 2;
else
return cross(a, b) / 2;
}
friend vector<point> tangents(const Circle &C, const point &p) {
return _tangents({p, T()}, C, {1});
}
friend vector<line> inner_tangents(const Circle& a, const Circle& b) {
return _tangents(a, b, {-1});
}
friend vector<line> outer_tangents(const Circle& a, const Circle& b) {
return _tangents(a, b, {1});
}
friend vector<line> _tangents(const Circle& a, const Circle& b, const initializer_list<int>& r_sgn) {
vector<line> res;
for(int r_s : r_sgn) {
point d = b.center - a.center;
Large dr = (a.radius - b.radius*r_s), d2 = norm_sq(d), h2 = d2 - dr*dr;
if(GEOMETRY_COMPARE0(Large, d2) == 0) continue;
if(GEOMETRY_COMPARE0(Large, h2) < 0) continue;
for(T sgn : {-1, 1}) {
point v = (d * dr + ortho(d) * sqrtl(h2) * sgn) / d2;
res.push_back({a.center + v * a.radius, b.center + v * (b.radius * r_s)});
}
if(GEOMETRY_COMPARE0(Large, h2) == 0) res.pop_back();
}
return res;
}
friend vector<Note<line, int>> angular_tangents(const Circle& a, const vector<Circle>& v, vector<int>& sgn) {
vector<Note<line, int>> res;
res.reserve(4 * v.size());
int i = 0;
sgn = vector<int>(v.size());
vector<bool> reversed(4);
bool null_a = GEOMETRY_COMPARE0(T, a.radius) == 0;
for(int i = 0; i < v.size(); i++) {
bool null_i = GEOMETRY_COMPARE0(T, v[i].radius) == 0;
assert(!null_a || !null_i);
vector<line> tgts;
if(null_a || null_i) tgts = _tangents(a, v[i], {1});
else tgts = _tangents(a, v[i], {+1, -1});
if(tgts.empty()) continue;
fill(reversed.begin(), reversed.end(), false);
int j = 0;
for(auto& t : tgts) {
// direct tangents
if(ccw(t.b - t.a, a.center - t.a) < 0)
swap(t.a, t.b), reversed[j] = true;
res.push_back(make_note<line, int>(t, i));
j++;
}
// check signal
auto it = AngleComparator<RayDirection<line>, T, Large>::minByAngle(tgts.begin(), tgts.end());
point ta = reversed[it - tgts.begin()] ? it->b : it->a;
point dir = v[i].center - ta;
sgn[i] = half_ccw(it->direction(), dir);
}
AngleComparator<RayDirection<line>, T, Large>::sortByAngle(res.begin(), res.end());
return res;
}
friend bool contains(const Circle &c, const point &p) {
return GEOMETRY_COMPARE(Large, dist(p, c.center), c.radius) <= 0;
}
friend bool contains(const Circle &c, const segment &s) {
return GEOMETRY_COMPARE(Large, dist(s.a, c.center), c.radius) <= 0 &&
GEOMETRY_COMPARE(Large, dist(s.b, c.center), c.radius) <= 0;
}
template <typename L>
friend bool partially_contains(const Circle &c, const L &l) {
return GEOMETRY_COMPARE(Large, dist(l, c.center), c.radius) <= 0;
}
template <typename L>
friend bool has_unique_intersection(const Circle &c, const L &l) {
return GEOMETRY_COMPARE(Large, dist(l, c.center), c.radius) == 0;
}
template <typename L>
friend bool has_intersection(const Circle &c, const L &l) {
return GEOMETRY_COMPARE(Large, dist(l, c.center), c.radius) <= 0;
}
friend bool has_intersection(const Circle &c, const segment &s) {
return GEOMETRY_COMPARE(Large, dist(s, c.center), c.radius) <= 0 &&
(GEOMETRY_COMPARE(Large, dist(s.a, c.center), c.radius) >= 0 ||
GEOMETRY_COMPARE(Large, dist(s.b, c.center), c.radius) >= 0);
}
};
} // namespace plane
template <typename T, typename Large = T>
struct CirclePlane : public CartesianPlane<T, Large> {
typedef plane::Circle<T, Large> circle;
};
} // namespace geo
} // namespace lib
#line 6 "geometry/Polygon2D.cpp"
namespace lib {
using namespace std;
namespace geo {
namespace plane {
template <typename T, typename Large = T> struct ConvexHullComparator {
typedef Point<T, Large> point;
point pivot;
ConvexHullComparator(point p) : pivot(p) {}
template <typename G>
bool operator()(const pair<point, G> &a, const pair<point, G> &b) const {
int k = ccw(pivot, a.first, b.first);
if (k == 0)
return norm_sq(a.first) < norm_sq(b.first);
return k > 0;
}
};
template <typename T, typename Large = T> struct Polygon {
typedef Point<T, Large> point;
typedef Polygon<T, Large> polygon;
typedef Circle<T, Large> circle;
vector<point> p;
Polygon() {}
Polygon(const vector<point> &p) : p(p) {}
template <typename G> Polygon(const vector<pair<point, G>> &g) : p(g.size()) {
for (size_t i = 0; i < g.size(); i++)
p[i] = g[i].first;
}
template <typename A, typename B> explicit operator Polygon<A, B>() const {
vector<Point<A, B>> v(p.size());
for (size_t i = 0; i < p.size(); i++)
v[i] = Point<A, B>(p[i]);
return Polygon<A, B>(v);
}
inline int index(int i) const {
if (i >= size())
i %= size();
else if (i < 0) {
i %= size();
if (i < 0)
i += size();
}
return i;
}
inline int size() const { return p.size(); }
inline point &operator[](int i) { return p[index(i)]; }
inline point operator[](int i) const { return p[index(i)]; }
void erase(int i) { p.erase(p.begin() + index(i)); }
polygon &operator+=(const point &pt) {
for (auto &q : p)
q += pt;
return *this;
}
polygon &operator-=(const point &pt) {
for (auto &q : p)
q -= pt;
return *this;
}
polygon &operator*=(const Large k) {
for (auto &q : p)
q *= k;
return *this;
}
polygon &operator/=(const Large k) {
for (auto &q : p)
q /= k;
return *this;
}
polygon operator-() const {
polygon res = *this;
for (auto &q : res.p)
q = -q;
return res;
}
void reserve(int n) { p.reserve(n); }
bool is_ccw() const {
int n = size();
int i = min_element(p.begin(), p.end()) - p.begin();
return ccw(p[i], p[i + 1], p[i - 1]) >= 0;
}
bool is_degenerate() const {
int n = size();
if (n < 3)
return true;
for (int i = 0; i < n; i++) {
if (GEOMETRY_COMPARE0(Large, cross(p[i + 2] - p[i], p[i + 1] - p[i])))
return false;
}
return true;
}
inline operator vector<point>() const { return p; }
friend Large double_area(const Polygon &p) {
int n = p.size();
Large res = 0;
for (int i = 0; i < n; i++) {
res += cross(p[i], p[i + 1]);
}
return abs(res);
}
friend Large area(const Polygon &p) { return double_area(p) / 2; }
friend Large perimeter(const Polygon &p) {
int n = p.size();
Large res = 0;
for (int i = 0; i < n; i++)
res += dist(p[i], p[i + 1]);
return res;
}
int test(const point &p) const {
const Polygon &poly = *this;
int n = size();
int wn = 0;
for (int i = 0; i < n; i++) {
if (p == poly[i])
return 0;
int j = i + 1;
if (poly[i].y == p.y && poly[j].y == p.y) {
if (min(poly[i].x, poly[j].x) <= p.x &&
p.x <= max(poly[i].x, poly[j].x))
return 0;
} else {
bool below = poly[i].y < p.y;
if (below != (poly[j].y < p.y)) {
auto sig = ccw(poly[i], poly[j], p);
if (sig == 0)
return 0;
if (below == (sig > 0))
wn += below ? 1 : -1;
}
}
}
return wn == 0 ? 1 : -1;
}
template <typename G>
static vector<pair<point, G>> convex_hull(vector<pair<point, G>> p,
bool keep_border = false) {
if (p.size() <= 1)
return p;
sort(p.begin(), p.end());
vector<pair<point, G>> res;
res.reserve(p.size() + 1);
for (int step = 0; step < 2; step++) {
auto start = res.size();
for (auto &q : p) {
while (res.size() >= start + 2) {
int sig = ccw(res[res.size() - 2].first, res.back().first, q.first);
if ((sig == 0 && !keep_border) || sig < 0)
res.pop_back();
else
break;
}
res.push_back(q);
}
res.pop_back();
if (step == 0)
reverse(p.begin(), p.end());
}
if (res.size() == 2 && res[0] == res[1])
res.pop_back();
return res;
}
static polygon convex_hull(const vector<point> &p, bool keep_border = false) {
vector<pair<point, int>> v(p.size());
for (size_t i = 0; i < p.size(); i++)
v[i] = {p[i], i};
auto res = convex_hull(v, keep_border);
return polygon(res);
}
friend vector<polygon> triangulation(polygon poly) {
if (poly.size() < 3)
return {};
vector<polygon> res;
int ptr = 0;
int n;
while ((n = poly.size()) > 3) {
for (int &i = ptr;; i++) {
if (ccw(poly[i - 1], poly[i], poly[i + 1]) > 0) {
auto trig = polygon({poly[i - 1], poly[i], poly[i + 1]});
bool good = true;
for (int j = 0; j < n; j++) {
good &= trig.test(poly[j]) >= 0;
}
if (!good)
continue;
poly.erase(i--);
res.push_back(trig);
break;
}
}
}
res.push_back(poly);
return res;
}
friend Large intersection_area(const Polygon &p, const circle &C) {
Large res = 0;
int n = p.size();
for (int i = 0; i < n; i++) {
res += circle::intersection_signed_area(C.radius, p[i + 1] - C.center,
p[i] - C.center);
}
return abs(res);
}
};
template <typename T, typename Large = T>
struct ConvexPolygon : public Polygon<T, Large> {
typedef Point<T, Large> point;
typedef Segment<T, Large> segment;
typedef Line<T, Large> line;
typedef Halfplane<T, Large> halfplane;
typedef Circle<T, Large> circle;
typedef AngleComparator<PointDirection<point>, T, Large> angle_comparator;
using Polygon<T, Large>::p;
int top;
ConvexPolygon() {}
ConvexPolygon(const vector<point> &p) : Polygon<T, Large>(p) { normalize(); }
template <typename G>
ConvexPolygon(const vector<pair<point, G>> &p) : Polygon<T, Large>(p) {
normalize();
}
void normalize() {
auto bottom = min_element(p.begin(), p.end());
rotate(p.begin(), bottom, p.end());
top = max_element(p.begin(), p.end()) - p.begin();
}
ConvexPolygon &operator+=(const point &pt) {
for (auto &q : p)
q += pt;
return *this;
}
ConvexPolygon &operator-=(const point &pt) {
for (auto &q : p)
q -= pt;
return *this;
}
ConvexPolygon &operator*=(const Large k) {
for (auto &q : p)
q *= k;
return *this;
}
ConvexPolygon &operator/=(const Large k) {
for (auto &q : p)
q /= k;
return *this;
}
ConvexPolygon operator-() const {
ConvexPolygon res = *this;
for (auto &q : res.p)
q = -q;
return res;
}
int test(const point &q) const {
if (q < p[0] || q > p[top])
return 1;
auto sig = ccw(p[0], p[top], q);
if (sig == 0) {
if (q == p[0] || q == p[top])
return 0;
return top == 1 || top + 1 == this->size() ? 0 : -1;
} else if (sig < 0) {
auto it = lower_bound(p.begin() + 1, p.begin() + top, q);
return ccw(it[-1], q, it[0]);
} else {
auto it = upper_bound(p.rbegin(), p.rend() - top - 1, q);
auto pit_deref = it == p.rbegin() ? p[0] : it[-1];
return ccw(*it, q, pit_deref);
}
}
template <typename Function> int extreme(Function direction) const {
int n = this->size(), left = 0, leftSig;
const ConvexPolygon &poly = *this;
auto vertex_cmp = [&poly, direction](int i, int j) {
return ccw(poly[j] - poly[i], direction(poly[j]));
};
auto is_extreme = [n, vertex_cmp](int i, int &iSig) {
return (iSig = vertex_cmp(i + 1, i)) >= 0 && vertex_cmp(i, i - 1) < 0;
};
for (int right = is_extreme(0, leftSig) ? 1 : n; left + 1 < right;) {
int mid = (left + right) / 2, midSig;
if (is_extreme(mid, midSig))
return mid;
if (leftSig != midSig ? leftSig < midSig
: leftSig == vertex_cmp(left, mid))
right = mid;
else
left = mid, leftSig = midSig;
}
return poly.index(left);
}
void stab_extremes(const line &l, int &left, int &right) const {
point direction = l.direction();
right = extreme([&direction](const point &) { return direction; });
left = extreme([&direction](const point &) { return -direction; });
}
friend vector<point> intersect(const ConvexPolygon &poly, const line &l) {
point direction = l.direction();
int left, right;
poly.stab_extremes(l, left, right);
auto vertex_cmp = [&l, &direction](const point &q) {
return ccw(q - l.a, direction);
};
int rightSig = vertex_cmp(poly[right]), leftSig = vertex_cmp(poly[left]);
if (rightSig < 0 || leftSig > 0)
return {};
auto intersectChain = [&l, &poly, vertex_cmp](int first, int last,
int firstSig) {
int n = poly.size();
while (poly.index(first + 1) != poly.index(last)) {
int mid = (first + last + (first < last ? 0 : n)) / 2;
mid = poly.index(mid);
if (vertex_cmp(poly[mid]) == firstSig)
first = mid;
else
last = mid;
}
return intersect(l, line(poly[first], poly[last]));
};
return {intersectChain(left, right, leftSig).first,
intersectChain(right, left, rightSig).first};
}
friend bool has_intersection(const ConvexPolygon &p, const line &l) {
point direction = l.direction();
int left, right;
p.stab_extremes(l, left, right);
auto vertex_cmp = [&l, &direction](const point &q) {
return ccw(q - l.a, direction);
};
int rightSig = vertex_cmp(p[right]), leftSig = vertex_cmp(p[left]);
if (rightSig < 0 || leftSig > 0)
return false;
return true;
}
friend Large dist(const ConvexPolygon &p, const line &l) {
point direction = l.direction();
int left, right;
p.stab_extremes(l, left, right);
auto vertex_cmp = [&l, &direction](const point &q) {
return ccw(q - l.a, direction);
};
int rightSig = vertex_cmp(p[right]), leftSig = vertex_cmp(p[left]);
if (rightSig < 0 || leftSig > 0) {
return min(dist(l, p[right]), dist(l, p[left]));
} else {
return 0;
}
}
template <typename Function>
friend void antipodals(const ConvexPolygon &poly, Function f) {
if (poly.size() <= 1)
return;
if (poly.size() == 2)
return void(f(0, 1));
auto area = [&poly](int i, int j, int k) {
return abs(cross(poly[i], poly[j], poly[k]));
};
auto func = [f, &poly](int i, int j) {
return f(poly.index(i), poly.index(j));
};
int p = -1;
int q = 0;
while (area(p, p + 1, q + 1) > area(p, p + 1, q))
q++;
int p0 = 0;
int q0 = q;
while (poly.index(q) != p0) {
p++;
func(p, q);
while (area(p, p + 1, q + 1) > area(p, p + 1, q)) {
q++;
if (poly.index(p) != poly.index(q0) || poly.index(q) != p0)
func(p, q);
else
return;
}
if (area(p, p + 1, q + 1) == area(p, p + 1, q)) {
if (poly.index(p) != poly.index(q0) || poly.index(q) != p0)
func(p, q + 1);
else
func(p + 1, q);
}
}
}
friend ConvexPolygon minkowski_sum(const vector<ConvexPolygon> &v) {
vector<point> vectors;
point origin;
for (auto &poly : v) {
origin += poly[0];
for (int i = 0; i < poly.size(); i++)
vectors.push_back(poly[i + 1] - poly[i]);
}
angle_comparator::sortByAngle(vectors.begin(), vectors.end());
auto last = point();
if (!vectors.empty()) {
last = vectors.back();
vectors.pop_back();
}
vector<point> res;
res.push_back(origin);
for (auto &v : vectors) {
res.push_back(res.back() + v);
int n = res.size();
if (n >= 3 && collinear(res[n - 3], res[n - 2], res[n - 1]))
res.erase(res.begin() + n - 2);
}
int n = res.size();
if (n >= 3 && collinear(res[n - 2], res[n - 1], res[0]))
res.pop_back();
if (res.size() >= 3 && collinear(res.back(), res[0], res[1]))
res.erase(res.begin());
return ConvexPolygon(res);
}
friend ConvexPolygon minkowski_sum(const ConvexPolygon &a,
const ConvexPolygon &b) {
vector<ConvexPolygon> v;
v.push_back(a);
v.push_back(b);
return minkowski_sum(v);
}
friend ConvexPolygon intersect(const ConvexPolygon &a,
const ConvexPolygon &b) {
vector<point> candidates;
auto consider = [&candidates](const ConvexPolygon &a,
const ConvexPolygon &b) {
for (int i = 0; i < a.size(); i++) {
if (b.test(a[i]) <= 0)
candidates.push_back(a[i]);
segment s(a[i], a[i + 1]);
vector<point> ps = intersect(b, s.as_line());
for (auto p : ps) {
if (s.contains(p))
candidates.push_back(p);
}
}
};
consider(a, b);
consider(b, a);
auto res = ConvexPolygon(ConvexPolygon::convex_hull(candidates));
return res;
}
friend Large intersection_area_or_dist(const ConvexPolygon &a,
const ConvexPolygon &b) {
ConvexPolygon inter = intersect(a, b);
if (inter.size() > 0)
return max(area(inter), Large(0));
ConvexPolygon sum = minkowski_sum(a, -b);
Large res = numeric_limits<Large>::max();
for (int i = 0; i < sum.size(); i++) {
res = min(res, dist(segment(sum[i], sum[i + 1]), point()));
}
return -res;
}
void cut(const halfplane& pl) {
int n = this->size();
if(n < 3) return;
p.push_back(p[0]);
auto pl_line = pl.as_line();
vector<point> out;
bool inside = pl.strictly_contains(p[0]);
if(inside) out.push_back(p[0]);
for(int i = 1; i <= n; i++) {
if(pl.strictly_contains(p[i])) {
if(!inside) {
out.push_back(intersect(pl_line, line(p[i-1], p[i])).first);
}
out.push_back(p[i]);
inside = true;
} else {
if(inside) {
out.push_back(intersect(pl_line, line(p[i-1], p[i])).first);
}
inside = false;
}
}
if(!out.empty() && out[0] == out.back()) out.pop_back();
*this = ConvexPolygon(ConvexPolygon::convex_hull(out));
}
void cut(const ConvexPolygon &rhs) {
for(int i = 0; i < rhs.size(); i++) {
cut(halfplane::from_points(rhs[i], rhs[i+1]));
}
}
};
} // namespace plane
template <typename T, typename Large = T>
struct PolygonPlane : public CirclePlane<T, Large> {
typedef plane::Polygon<T, Large> polygon;
typedef plane::ConvexPolygon<T, Large> convex_polygon;
};
} // namespace geo
} // namespace lib
#line 6 "geometry/Caliper.cpp"
namespace lib {
using namespace std;
namespace geo {
namespace plane {
template <typename T, typename Large = T,
typename enable_if<!is_integral<T>::value>::type * = nullptr,
typename enable_if<!is_integral<T>::value>::type * = nullptr>
struct Caliper {
typedef Point<T, Large> point;
typedef Line<T, Large> line;
point p;
Large ang;
Caliper(point a, Large alpha) : p(a) {
ang = remainder(alpha, 2 * trig::PI);
while (ang < 0)
ang += 2 * trig::PI;
}
Large angle_to(const point &q) const {
return remainder(arg(q - p) - ang, 2 * trig::PI);
}
void rotate(double theta) {
ang += theta;
while (ang > 2 * trig::PI)
ang -= 2 * trig::PI;
while (ang < 0)
ang += 2 * trig::PI;
}
void move(const point &q) { p = q; }
point versor() const { return point::polar(1.0, ang); }
line as_line(Large scale = 1.0) const {
return line(p, p + versor() * scale);
}
friend Large dist(const Caliper &a, const Caliper &b) {
return dist(a.as_line(), b.p);
}
};
template <typename T, typename Large = T> struct PolygonCalipers {
constexpr static Large LIMIT = 4 * acosl(-1);
typedef Point<T, Large> point;
typedef Caliper<T, Large> caliper;
typedef ConvexPolygon<T, Large> polygon;
typedef pair<int, Large> descriptor;
polygon poly;
vector<caliper> calipers;
vector<int> indices;
vector<int> walked;
Large angle_walked;
PolygonCalipers(const polygon &poly, const vector<descriptor> &descriptors)
: poly(poly), walked(descriptors.size()), angle_walked(0) {
indices.reserve(descriptors.size());
calipers.reserve(descriptors.size());
for (size_t i = 0; i < descriptors.size(); i++) {
calipers.emplace_back(poly[descriptors[i].first], descriptors[i].second);
indices.emplace_back(descriptors[i].first);
}
}
caliper operator[](int i) const { return calipers[i]; }
int index(int i) const { return indices[i]; }
bool has_next() const {
return *min_element(walked.begin(), walked.end()) < poly.size() &&
angle_walked < LIMIT;
}
Large angle_to_next(int i) const {
int u = indices[i];
return calipers[i].angle_to(poly[u + 1]);
}
void step_(int i) {
int u = indices[i]++;
indices[i] %= poly.size();
calipers[i].move(poly[u + 1]);
walked[i]++;
}
void next() {
int i = 0;
Large best = angle_to_next(0);
for (size_t j = 1; j < calipers.size(); j++) {
Large cur = angle_to_next(j);
if (cur < best) {
best = cur;
i = j;
}
}
Large alpha = angle_to_next(i);
for (auto &caliper : calipers)
caliper.rotate(alpha);
step_(i);
angle_walked += alpha;
}
};
} // namespace plane
} // namespace geo
} // namespace lib