This documentation is automatically generated by online-judge-tools/verification-helper
#ifndef _LIB_SIMPLEX
#define _LIB_SIMPLEX
#include <bits/stdc++.h>
namespace lib {
using namespace std;
template <typename DOUBLE> struct LPSolver {
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
constexpr static DOUBLE EPS = 1e-9;
int m, n;
VI B, N;
VVD D;
LPSolver(const VVD &A, const VD &b, const VD &c)
: m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
D[i][j] = A[i][j];
for (int i = 0; i < m; i++) {
B[i] = n + i;
D[i][n] = -1;
D[i][n + 1] = b[i];
}
for (int j = 0; j < n; j++) {
N[j] = j;
D[m][j] = -c[j];
}
N[n] = -1;
D[m + 1][n] = 1;
}
void Pivot(int r, int s) {
for (int i = 0; i < m + 2; i++)
if (i != r)
for (int j = 0; j < n + 2; j++)
if (j != s)
D[i][j] -= D[r][j] * D[i][s] / D[r][s];
for (int j = 0; j < n + 2; j++)
if (j != s)
D[r][j] /= D[r][s];
for (int i = 0; i < m + 2; i++)
if (i != r)
D[i][s] /= -D[r][s];
D[r][s] = 1.0 / D[r][s];
swap(B[r], N[s]);
}
bool Simplex(int phase) {
int x = phase == 1 ? m + 1 : m;
while (true) {
int s = -1;
for (int j = 0; j <= n; j++) {
if (phase == 2 && N[j] == -1)
continue;
if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] && N[j] < N[s])
s = j;
}
if (D[x][s] > -EPS)
return true;
int r = -1;
for (int i = 0; i < m; i++) {
if (D[i][s] < EPS)
continue;
if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
(D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i] < B[r])
r = i;
}
if (r == -1)
return false;
Pivot(r, s);
}
}
DOUBLE Solve(VD &x) {
int r = 0;
for (int i = 1; i < m; i++)
if (D[i][n + 1] < D[r][n + 1])
r = i;
if (D[r][n + 1] < -EPS) {
Pivot(r, n);
if (!Simplex(1) || D[m + 1][n + 1] < -EPS)
return -numeric_limits<DOUBLE>::infinity();
for (int i = 0; i < m; i++)
if (B[i] == -1) {
int s = -1;
for (int j = 0; j <= n; j++)
if (s == -1 || D[i][j] < D[i][s] ||
D[i][j] == D[i][s] && N[j] < N[s])
s = j;
Pivot(i, s);
}
}
if (!Simplex(2))
return numeric_limits<DOUBLE>::infinity();
x = VD(n);
for (int i = 0; i < m; i++)
if (B[i] < n)
x[B[i]] = D[i][n + 1];
return D[m][n + 1];
}
};
} // namespace lib
#endif
#line 1 "Simplex.cpp"
#include <bits/stdc++.h>
namespace lib {
using namespace std;
template <typename DOUBLE> struct LPSolver {
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
constexpr static DOUBLE EPS = 1e-9;
int m, n;
VI B, N;
VVD D;
LPSolver(const VVD &A, const VD &b, const VD &c)
: m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
D[i][j] = A[i][j];
for (int i = 0; i < m; i++) {
B[i] = n + i;
D[i][n] = -1;
D[i][n + 1] = b[i];
}
for (int j = 0; j < n; j++) {
N[j] = j;
D[m][j] = -c[j];
}
N[n] = -1;
D[m + 1][n] = 1;
}
void Pivot(int r, int s) {
for (int i = 0; i < m + 2; i++)
if (i != r)
for (int j = 0; j < n + 2; j++)
if (j != s)
D[i][j] -= D[r][j] * D[i][s] / D[r][s];
for (int j = 0; j < n + 2; j++)
if (j != s)
D[r][j] /= D[r][s];
for (int i = 0; i < m + 2; i++)
if (i != r)
D[i][s] /= -D[r][s];
D[r][s] = 1.0 / D[r][s];
swap(B[r], N[s]);
}
bool Simplex(int phase) {
int x = phase == 1 ? m + 1 : m;
while (true) {
int s = -1;
for (int j = 0; j <= n; j++) {
if (phase == 2 && N[j] == -1)
continue;
if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] && N[j] < N[s])
s = j;
}
if (D[x][s] > -EPS)
return true;
int r = -1;
for (int i = 0; i < m; i++) {
if (D[i][s] < EPS)
continue;
if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
(D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i] < B[r])
r = i;
}
if (r == -1)
return false;
Pivot(r, s);
}
}
DOUBLE Solve(VD &x) {
int r = 0;
for (int i = 1; i < m; i++)
if (D[i][n + 1] < D[r][n + 1])
r = i;
if (D[r][n + 1] < -EPS) {
Pivot(r, n);
if (!Simplex(1) || D[m + 1][n + 1] < -EPS)
return -numeric_limits<DOUBLE>::infinity();
for (int i = 0; i < m; i++)
if (B[i] == -1) {
int s = -1;
for (int j = 0; j <= n; j++)
if (s == -1 || D[i][j] < D[i][s] ||
D[i][j] == D[i][s] && N[j] < N[s])
s = j;
Pivot(i, s);
}
}
if (!Simplex(2))
return numeric_limits<DOUBLE>::infinity();
x = VD(n);
for (int i = 0; i < m; i++)
if (B[i] < n)
x[B[i]] = D[i][n + 1];
return D[m][n + 1];
}
};
} // namespace lib