This documentation is automatically generated by online-judge-tools/verification-helper
#ifndef _LIB_NTT
#define _LIB_NTT
#include <bits/stdc++.h>
#include "DFT.cpp"
#include "NumberTheory.cpp"
#include "VectorN.cpp"
namespace lib {
using namespace std;
namespace linalg {
template<typename T>
struct MintRootProvider {
static size_t max_sz;
static T g;
static vector<T> w;
MintRootProvider() {
if(g == 0) {
auto acc = T::mod-1;
while(acc % 2 == 0) acc /= 2, max_sz++;
auto factors = nt::factors(T::mod - 1);
for(g = 2; (typename T::type_int)g < T::mod; g++) {
bool ok = true;
for(auto f : factors) {
if(power(g, (T::mod-1)/f) == 1) {
ok = false;
break;
}
}
if(ok) break;
}
assert(g != 0);
}
}
pair<T, T> roots(int num, int den) {
auto p = g ^ ((long long)(T::mod - 1) / den * num);
return {p, p.inverse()};
}
T operator()(int n, int k) {
return power(g, (T::mod-1)/(n/k));
}
void operator()(int n) {
n = max(n, 2);
int k = max((int)w.size(), 2);
assert(n <= (1LL << max_sz));
if ((int)w.size() < n)
w.resize(n);
else
return;
w[0] = w[1] = 1;
for (; k < n; k *= 2) {
T step = power(g, (T::mod-1)/(2*k));
for(int i = k; i < 2*k; i++)
w[i] = (i&1) ? w[i/2] * step : w[i/2];
}
}
T operator[](int i) {
return w[i];
}
T inverse(int n) {
return T(1) / n;
}
};
template<typename T>
size_t MintRootProvider<T>::max_sz = 1;
template<typename T>
T MintRootProvider<T>::g = T();
template<typename T>
vector<T> MintRootProvider<T>::w = vector<T>();
template<typename T>
struct NTT : public DFT<T, MintRootProvider<T>> {
using Parent = DFT<T, MintRootProvider<T>>;
using Parent::fa;
using Parent::dft;
using Parent::idft;
static void _convolve(const vector<T> &a) {
int n = Parent::ensure(a.size(), a.size());
for (size_t i = 0; i < (size_t)n; i++)
fa[i] = i < a.size() ? a[i] : T();
Parent::dft(n);
for (int i = 0; i < n; i++)
fa[i] *= fa[i];
Parent::idft(n);
}
static void _convolve(const vector<T> &a, const vector<T> &b) {
if(std::addressof(a) == std::addressof(b))
return _convolve(a);
int n = Parent::ensure(a.size(), b.size());
for (size_t i = 0; i < (size_t)n; i++)
fa[i] = i < a.size() ? a[i] : T();
Parent::dft(n);
// TODO: have a buffer for this
auto fb = retrieve<Parent, T>(n);
for(size_t i = 0; i < (size_t)n; i++)
fa[i] = i < b.size() ? b[i] : T();
Parent::dft(n);
for (int i = 0; i < n; i++)
fa[i] *= fb[i];
Parent::idft(n);
}
static vector<T> convolve(const vector<T>& a, const vector<T>& b) {
int sz = (int)a.size() + b.size() - 1;
_convolve(a, b);
return retrieve<Parent, T>(sz);
}
static VectorN<T> transform(vector<T> a, int n) {
a.resize(n);
Parent::dft(a, n);
return a;
}
static vector<T> itransform(vector<T> a, int n) {
int sz = a.size();
Parent::idft(a, sz);
a.resize(min(n, sz));
return a;
}
};
}
struct NTTMultiplication {
template<typename T>
using Transform = linalg::NTT<T>;
template <typename Field>
vector<Field> operator()(const vector<Field> &a,
const vector<Field> &b) const {
return linalg::NTT<Field>::convolve(a, b);
};
template<typename Field>
inline VectorN<Field> transform(int n, const vector<Field>& p) const {
int np = next_power_of_two(n);
return linalg::NTT<Field>::transform(p, np);
}
template<typename Field>
inline vector<Field> itransform(int n, const vector<Field>& p) const {
return linalg::NTT<Field>::itransform(p, n);
}
template <typename Field, typename Functor, typename ...Ts>
inline vector<Field> on_transform(
int n,
Functor& f,
const vector<Ts>&... vs) const {
int np = next_power_of_two(n);
return linalg::NTT<Field>::itransform(
f(n, linalg::NTT<Field>::transform(vs, np)...), n);
}
};
} // namespace lib
#endif
#line 1 "NTT.cpp"
#include <bits/stdc++.h>
#line 1 "DFT.cpp"
#line 1 "BitTricks.cpp"
#line 4 "BitTricks.cpp"
namespace lib {
long long next_power_of_two(long long n) {
if (n <= 0) return 1;
return 1LL << (sizeof(long long) * 8 - 1 - __builtin_clzll(n) +
((n & (n - 1LL)) != 0));
}
} // namespace lib
#line 5 "DFT.cpp"
namespace lib {
using namespace std;
namespace linalg {
template <typename Ring, typename Provider>
struct DFT {
static vector<int> rev;
static vector<Ring> fa;
// function used to precompute rev for fixed size fft (n is a power of two)
static void dft_rev(int n) {
Provider()(n);
int lbn = __builtin_ctz(n);
if ((int)rev.size() < (1 << lbn))
rev.resize(1 << lbn);
int h = -1;
for (int i = 1; i < n; i++) {
if ((i & (i - 1)) == 0)
h++;
rev[i] = rev[i ^ (1 << h)] | (1 << (lbn - h - 1));
}
}
static void dft_iter(Ring *p, int n) {
Provider w;
for (int L = 2; L <= n; L <<= 1) {
for (int i = 0; i < n; i += L) {
for (int j = 0; j < L / 2; j++) {
Ring z = p[i + j + L / 2] * w[j + L / 2];
p[i + j + L / 2] = p[i + j] - z;
p[i + j] += z;
}
}
}
}
static void swap(vector<Ring> &buf) { std::swap(fa, buf); }
static void _dft(Ring *p, int n) {
dft_rev(n);
for (int i = 0; i < n; i++)
if (i < rev[i])
std::swap(p[i], p[rev[i]]);
dft_iter(p, n);
}
static void _idft(Ring *p, int n) {
_dft(p, n);
reverse(p + 1, p + n);
Ring inv = Provider().inverse(n);
for (int i = 0; i < n; i++)
p[i] *= inv;
}
static void dft(int n) { _dft(fa.data(), n); }
static void idft(int n) { _idft(fa.data(), n); }
static void dft(vector<Ring> &v, int n) {
swap(v);
dft(n);
swap(v);
}
static void idft(vector<Ring> &v, int n) {
swap(v);
idft(n);
swap(v);
}
static int ensure(int a, int b = 0) {
int n = a+b;
n = next_power_of_two(n);
if ((int)fa.size() < n)
fa.resize(n);
return n;
}
static void clear(int n) { fill(fa.begin(), fa.begin() + n, 0); }
template<typename Iterator>
static void fill(Iterator begin, Iterator end) {
int n = ensure(distance(begin, end));
int i = 0;
for(auto it = begin; it != end; ++it) {
fa[i++] = *it;
}
for(;i < n; i++) fa[i] = Ring();
}
};
template<typename DF, typename U>
static vector<U> retrieve(int n) {
assert(n <= DF::fa.size());
vector<U> res(n);
for(int i = 0; i < n; i++) res[i] = (U)DF::fa[i];
return res;
}
template<typename Ring, typename Provider>
vector<int> DFT<Ring, Provider>::rev = vector<int>();
template<typename Ring, typename Provider>
vector<Ring> DFT<Ring, Provider>::fa = vector<Ring>();
}
} // namespace lib
#line 1 "NumberTheory.cpp"
#line 4 "NumberTheory.cpp"
namespace lib {
using namespace std;
namespace nt {
int64_t inverse(int64_t a, int64_t b) {
long long b0 = b, t, q;
long long x0 = 0, x1 = 1;
if (b == 1)
return 1;
while (a > 1) {
q = a / b;
t = b, b = a % b, a = t;
t = x0, x0 = x1 - q * x0, x1 = t;
}
if (x1 < 0)
x1 += b0;
return x1;
}
template<typename T, typename U>
T powmod (T a, U b, U p) {
int res = 1;
while (b)
if (b & 1)
res = (int) (res * 1ll * a % p), --b;
else
a = (int) (a * 1ll * a % p), b >>= 1;
return res;
}
template<typename T>
vector<T> factors(T n) {
vector<T> f;
for(T i = 2; i*i <= n; i++) {
if(n % i == 0) f.push_back(i);
while(n % i == 0) n /= i;
}
if(n > 1) f.push_back(n);
return f;
}
} // namespace nt
} // namespace lib
#line 1 "VectorN.cpp"
#line 1 "Traits.cpp"
#line 4 "Traits.cpp"
namespace lib {
using namespace std;
namespace traits {
template <typename...> struct make_void { using type = void; };
template <typename... T> using void_t = typename make_void<T...>::type;
/// keep caide
template <typename Iterator>
using IteratorCategory = typename iterator_traits<Iterator>::iterator_category;
/// keep caide
template <typename Container>
using IteratorCategoryOf = IteratorCategory<typename Container::iterator>;
/// keep caide
template <typename Iterator>
using IteratorValue = typename iterator_traits<Iterator>::value_type;
/// keep caide
template <typename Container>
using IteratorValueOf = IteratorValue<typename Container::iterator>;
/// keep caide
template <typename Iterator>
using IsRandomIterator =
is_base_of<random_access_iterator_tag, IteratorCategory<Iterator>>;
/// keep caide
template <typename Iterator>
using IsInputIterator =
is_base_of<input_iterator_tag, IteratorCategory<Iterator>>;
/// keep caide
template <typename Iterator>
using IsBidirectionalIterator =
is_base_of<bidirectional_iterator_tag, IteratorCategory<Iterator>>;
/// keep caide
template <typename Container>
using HasRandomIterator =
is_base_of<random_access_iterator_tag, IteratorCategoryOf<Container>>;
/// keep caide
template <typename Container>
using HasInputIterator =
is_base_of<input_iterator_tag, IteratorCategoryOf<Container>>;
/// keep caide
template <typename Container>
using HasBidirectionalIterator =
is_base_of<bidirectional_iterator_tag, IteratorCategoryOf<Container>>;
} // namespace traits
} // namespace lib
#line 5 "VectorN.cpp"
#define VEC_CONST_OP(op, typ) \
type operator op(const typ rhs) const { \
auto res = *this; \
return res op##= rhs; \
}
#define VEC_BIN_OP(op) \
type& operator op##=(const type& rhs) { \
if(rhs.size() > this->size()) \
this->resize(rhs.size()); \
int sz = this->size(); \
for(int i = 0; i < (int)rhs.size(); i++) \
(*this)[i] op##= rhs[i]; \
for(int i = rhs.size(); i < sz; i++) \
(*this)[i] op##= 0; \
return *this; \
} \
VEC_CONST_OP(op, type)
#define VEC_SINGLE_OP(op, typ) \
type& operator op##=(const typ rhs) { \
for(auto& x : *this) \
x op##= rhs; \
return *this; \
} \
VEC_CONST_OP(op, typ)
namespace lib {
using namespace std;
template<typename T>
struct VectorN : vector<T> {
using type = VectorN<T>;
template <
typename Container,
typename enable_if<traits::HasInputIterator<Container>::value>::type * = nullptr>
VectorN(const Container &container)
: vector<T>(container.begin(), container.end()) {}
VectorN(const initializer_list<T> &v)
: vector<T>(v.begin(), v.end()) {}
template<typename... Args>
VectorN( Args&&... args )
: vector<T>(std::forward<Args>(args)...) {}
VEC_BIN_OP(+)
VEC_BIN_OP(-)
VEC_BIN_OP(*)
VEC_SINGLE_OP(+, T&)
VEC_SINGLE_OP(-, T&)
VEC_SINGLE_OP(*, T&)
VEC_SINGLE_OP(/, T&)
VEC_SINGLE_OP(^, int64_t)
type operator-() const {
auto res = *this;
for(auto& x : res) x = -x;
return res;
}
type operator%(int n) const {
// TODO: get rid of this
// return *const_cast<type*>(this);
return *this;
}
};
} // namespace lib
#line 7 "NTT.cpp"
namespace lib {
using namespace std;
namespace linalg {
template<typename T>
struct MintRootProvider {
static size_t max_sz;
static T g;
static vector<T> w;
MintRootProvider() {
if(g == 0) {
auto acc = T::mod-1;
while(acc % 2 == 0) acc /= 2, max_sz++;
auto factors = nt::factors(T::mod - 1);
for(g = 2; (typename T::type_int)g < T::mod; g++) {
bool ok = true;
for(auto f : factors) {
if(power(g, (T::mod-1)/f) == 1) {
ok = false;
break;
}
}
if(ok) break;
}
assert(g != 0);
}
}
pair<T, T> roots(int num, int den) {
auto p = g ^ ((long long)(T::mod - 1) / den * num);
return {p, p.inverse()};
}
T operator()(int n, int k) {
return power(g, (T::mod-1)/(n/k));
}
void operator()(int n) {
n = max(n, 2);
int k = max((int)w.size(), 2);
assert(n <= (1LL << max_sz));
if ((int)w.size() < n)
w.resize(n);
else
return;
w[0] = w[1] = 1;
for (; k < n; k *= 2) {
T step = power(g, (T::mod-1)/(2*k));
for(int i = k; i < 2*k; i++)
w[i] = (i&1) ? w[i/2] * step : w[i/2];
}
}
T operator[](int i) {
return w[i];
}
T inverse(int n) {
return T(1) / n;
}
};
template<typename T>
size_t MintRootProvider<T>::max_sz = 1;
template<typename T>
T MintRootProvider<T>::g = T();
template<typename T>
vector<T> MintRootProvider<T>::w = vector<T>();
template<typename T>
struct NTT : public DFT<T, MintRootProvider<T>> {
using Parent = DFT<T, MintRootProvider<T>>;
using Parent::fa;
using Parent::dft;
using Parent::idft;
static void _convolve(const vector<T> &a) {
int n = Parent::ensure(a.size(), a.size());
for (size_t i = 0; i < (size_t)n; i++)
fa[i] = i < a.size() ? a[i] : T();
Parent::dft(n);
for (int i = 0; i < n; i++)
fa[i] *= fa[i];
Parent::idft(n);
}
static void _convolve(const vector<T> &a, const vector<T> &b) {
if(std::addressof(a) == std::addressof(b))
return _convolve(a);
int n = Parent::ensure(a.size(), b.size());
for (size_t i = 0; i < (size_t)n; i++)
fa[i] = i < a.size() ? a[i] : T();
Parent::dft(n);
// TODO: have a buffer for this
auto fb = retrieve<Parent, T>(n);
for(size_t i = 0; i < (size_t)n; i++)
fa[i] = i < b.size() ? b[i] : T();
Parent::dft(n);
for (int i = 0; i < n; i++)
fa[i] *= fb[i];
Parent::idft(n);
}
static vector<T> convolve(const vector<T>& a, const vector<T>& b) {
int sz = (int)a.size() + b.size() - 1;
_convolve(a, b);
return retrieve<Parent, T>(sz);
}
static VectorN<T> transform(vector<T> a, int n) {
a.resize(n);
Parent::dft(a, n);
return a;
}
static vector<T> itransform(vector<T> a, int n) {
int sz = a.size();
Parent::idft(a, sz);
a.resize(min(n, sz));
return a;
}
};
}
struct NTTMultiplication {
template<typename T>
using Transform = linalg::NTT<T>;
template <typename Field>
vector<Field> operator()(const vector<Field> &a,
const vector<Field> &b) const {
return linalg::NTT<Field>::convolve(a, b);
};
template<typename Field>
inline VectorN<Field> transform(int n, const vector<Field>& p) const {
int np = next_power_of_two(n);
return linalg::NTT<Field>::transform(p, np);
}
template<typename Field>
inline vector<Field> itransform(int n, const vector<Field>& p) const {
return linalg::NTT<Field>::itransform(p, n);
}
template <typename Field, typename Functor, typename ...Ts>
inline vector<Field> on_transform(
int n,
Functor& f,
const vector<Ts>&... vs) const {
int np = next_power_of_two(n);
return linalg::NTT<Field>::itransform(
f(n, linalg::NTT<Field>::transform(vs, np)...), n);
}
};
} // namespace lib