This documentation is automatically generated by online-judge-tools/verification-helper
#ifndef _LIB_LAGRANGE
#define _LIB_LAGRANGE
#include <bits/stdc++.h>
#include "Combinatorics.cpp"
namespace lib {
using namespace std;
namespace linalg {
template <typename Field> struct PrefixLagrange {
vector<Field> pref, suf;
PrefixLagrange() {}
void ensure(int n) {
int o = pref.size();
if (n <= o)
return;
pref.resize(n), suf.resize(n);
}
template <typename T> Field eval(const vector<Field> &v, T x) {
using C = Combinatorics<Field>;
assert(!v.empty());
int d = (int)v.size() - 1;
if (x <= d)
return v[x];
ensure(d + 1);
Field a = x;
pref[0] = suf[d] = 1;
for (T i = 0; i < d; i++)
pref[i + 1] = pref[i] * a, a -= 1;
for (T i = d; i; i--)
suf[i - 1] = suf[i] * a, a += 1;
Field ans = 0;
for (int i = 0; i <= d; i++) {
Field l = pref[i] * suf[i] * C::ifactorial(i) * C::ifactorial(d-i) * v[i];
if ((d + i) & 1)
l = -l;
ans += l;
}
return ans;
}
};
template<typename T, typename U>
T lagrange_iota(const vector<T>& f, U n) {
static PrefixLagrange<T> lag;
return lag.eval(f, n);
}
template<typename T, typename U>
T lagrange_iota_sum(const vector<T>& f, U n) {
int m = f.size();
vector<T> g(m + 1);
for(int i = 1; i <= m; i++)
g[i] = g[i-1] + f[i-1];
return lagrange_iota(g, n);
}
} // namespace linalg
} // namespace lib
#endif
#line 1 "Lagrange.cpp"
#include <bits/stdc++.h>
#line 1 "Combinatorics.cpp"
#line 1 "BitTricks.cpp"
#line 4 "BitTricks.cpp"
namespace lib {
long long next_power_of_two(long long n) {
if (n <= 0) return 1;
return 1LL << (sizeof(long long) * 8 - 1 - __builtin_clzll(n) +
((n & (n - 1LL)) != 0));
}
} // namespace lib
#line 5 "Combinatorics.cpp"
namespace lib {
using namespace std;
template<typename T>
struct Combinatorics {
static vector<T> fat;
static vector<T> inv;
static vector<T> ifat;
static T factorial(int i) {
ensure_fat(next_power_of_two(i));
return fat[i];
}
static T inverse(int i) {
ensure_inv(next_power_of_two(i));
return inv[i];
}
static T ifactorial(int i) {
ensure_ifat(next_power_of_two(i));
return ifat[i];
}
static T nCr(int n, int K) {
if(K > n) return 0;
ensure_fat(next_power_of_two(n));
ensure_ifat(next_power_of_two(n));
return fat[n] * ifat[n-K] * ifat[K];
}
static T arrangement(int n, int K) {
return nCr(n, K) * factorial(n);
}
static T nCr_rep(int n, int K) {
return interpolate(n - 1, K);
}
static T interpolate(int a, int b) {
return nCr(a+b, b);
}
static void ensure_fat(int i) {
int o = fat.size();
if(i < o) return;
fat.resize(i+1);
for(int j = o; j <= i; j++) fat[j] = fat[j-1]*j;
}
static void ensure_inv(int i) {
int o = inv.size();
if(i < o) return;
inv.resize(i+1);
for(int j = o; j <= i; j++) inv[j] = -(inv[T::mod%j] * (T::mod/j));
}
static void ensure_ifat(int i) {
int o = ifat.size();
if(i < o) return;
ifat.resize(i+1);
ensure_inv(i);
for(int j = o; j <= i; j++) ifat[j] = ifat[j-1]*inv[j];
}
};
template<typename T>
vector<T> Combinatorics<T>::fat = vector<T>(1, T(1));
template<typename T>
vector<T> Combinatorics<T>::inv = vector<T>(2, T(1));
template<typename T>
vector<T> Combinatorics<T>::ifat = vector<T>(1, T(1));
} // namespace lib
#line 5 "Lagrange.cpp"
namespace lib {
using namespace std;
namespace linalg {
template <typename Field> struct PrefixLagrange {
vector<Field> pref, suf;
PrefixLagrange() {}
void ensure(int n) {
int o = pref.size();
if (n <= o)
return;
pref.resize(n), suf.resize(n);
}
template <typename T> Field eval(const vector<Field> &v, T x) {
using C = Combinatorics<Field>;
assert(!v.empty());
int d = (int)v.size() - 1;
if (x <= d)
return v[x];
ensure(d + 1);
Field a = x;
pref[0] = suf[d] = 1;
for (T i = 0; i < d; i++)
pref[i + 1] = pref[i] * a, a -= 1;
for (T i = d; i; i--)
suf[i - 1] = suf[i] * a, a += 1;
Field ans = 0;
for (int i = 0; i <= d; i++) {
Field l = pref[i] * suf[i] * C::ifactorial(i) * C::ifactorial(d-i) * v[i];
if ((d + i) & 1)
l = -l;
ans += l;
}
return ans;
}
};
template<typename T, typename U>
T lagrange_iota(const vector<T>& f, U n) {
static PrefixLagrange<T> lag;
return lag.eval(f, n);
}
template<typename T, typename U>
T lagrange_iota_sum(const vector<T>& f, U n) {
int m = f.size();
vector<T> g(m + 1);
for(int i = 1; i <= m; i++)
g[i] = g[i-1] + f[i-1];
return lagrange_iota(g, n);
}
} // namespace linalg
} // namespace lib