This documentation is automatically generated by online-judge-tools/verification-helper
#ifndef _LIB_COMBINATORICS
#define _LIB_COMBINATORICS
#include <bits/stdc++.h>
#include "BitTricks.cpp"
namespace lib {
using namespace std;
template<typename T>
struct Combinatorics {
static vector<T> fat;
static vector<T> inv;
static vector<T> ifat;
static T factorial(int i) {
ensure_fat(next_power_of_two(i));
return fat[i];
}
static T inverse(int i) {
ensure_inv(next_power_of_two(i));
return inv[i];
}
static T ifactorial(int i) {
ensure_ifat(next_power_of_two(i));
return ifat[i];
}
static T nCr(int n, int K) {
if(K > n) return 0;
ensure_fat(next_power_of_two(n));
ensure_ifat(next_power_of_two(n));
return fat[n] * ifat[n-K] * ifat[K];
}
static T arrangement(int n, int K) {
return nCr(n, K) * factorial(n);
}
static T nCr_rep(int n, int K) {
return interpolate(n - 1, K);
}
static T interpolate(int a, int b) {
return nCr(a+b, b);
}
static void ensure_fat(int i) {
int o = fat.size();
if(i < o) return;
fat.resize(i+1);
for(int j = o; j <= i; j++) fat[j] = fat[j-1]*j;
}
static void ensure_inv(int i) {
int o = inv.size();
if(i < o) return;
inv.resize(i+1);
for(int j = o; j <= i; j++) inv[j] = -(inv[T::mod%j] * (T::mod/j));
}
static void ensure_ifat(int i) {
int o = ifat.size();
if(i < o) return;
ifat.resize(i+1);
ensure_inv(i);
for(int j = o; j <= i; j++) ifat[j] = ifat[j-1]*inv[j];
}
};
template<typename T>
vector<T> Combinatorics<T>::fat = vector<T>(1, T(1));
template<typename T>
vector<T> Combinatorics<T>::inv = vector<T>(2, T(1));
template<typename T>
vector<T> Combinatorics<T>::ifat = vector<T>(1, T(1));
} // namespace lib
#endif
#line 1 "Combinatorics.cpp"
#include <bits/stdc++.h>
#line 1 "BitTricks.cpp"
#line 4 "BitTricks.cpp"
namespace lib {
long long next_power_of_two(long long n) {
if (n <= 0) return 1;
return 1LL << (sizeof(long long) * 8 - 1 - __builtin_clzll(n) +
((n & (n - 1LL)) != 0));
}
} // namespace lib
#line 5 "Combinatorics.cpp"
namespace lib {
using namespace std;
template<typename T>
struct Combinatorics {
static vector<T> fat;
static vector<T> inv;
static vector<T> ifat;
static T factorial(int i) {
ensure_fat(next_power_of_two(i));
return fat[i];
}
static T inverse(int i) {
ensure_inv(next_power_of_two(i));
return inv[i];
}
static T ifactorial(int i) {
ensure_ifat(next_power_of_two(i));
return ifat[i];
}
static T nCr(int n, int K) {
if(K > n) return 0;
ensure_fat(next_power_of_two(n));
ensure_ifat(next_power_of_two(n));
return fat[n] * ifat[n-K] * ifat[K];
}
static T arrangement(int n, int K) {
return nCr(n, K) * factorial(n);
}
static T nCr_rep(int n, int K) {
return interpolate(n - 1, K);
}
static T interpolate(int a, int b) {
return nCr(a+b, b);
}
static void ensure_fat(int i) {
int o = fat.size();
if(i < o) return;
fat.resize(i+1);
for(int j = o; j <= i; j++) fat[j] = fat[j-1]*j;
}
static void ensure_inv(int i) {
int o = inv.size();
if(i < o) return;
inv.resize(i+1);
for(int j = o; j <= i; j++) inv[j] = -(inv[T::mod%j] * (T::mod/j));
}
static void ensure_ifat(int i) {
int o = ifat.size();
if(i < o) return;
ifat.resize(i+1);
ensure_inv(i);
for(int j = o; j <= i; j++) ifat[j] = ifat[j-1]*inv[j];
}
};
template<typename T>
vector<T> Combinatorics<T>::fat = vector<T>(1, T(1));
template<typename T>
vector<T> Combinatorics<T>::inv = vector<T>(2, T(1));
template<typename T>
vector<T> Combinatorics<T>::ifat = vector<T>(1, T(1));
} // namespace lib